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Summary—A  brief description is given of the body of theory known as Newtonian
flow theory, the theory based on the assumption that the shock layer in a hyper-
sonic flow is infinitesimally thin. The reasons why the study of this theory is
essential to an understanding of hypersonic aerodynamics are emphasized.

The accomplishments of Sir Isaac Newton in gas dynamics are discussed,
together with the development of the pressure laws referred to as Newtonian.
Some of the features of the general theory are discussed, including optimum
shapes for minimum drag and solutions with cross flow.

IN the field of hypersonic aerodynamics the phrase "Newtonian pressure
law" or some equivalent appears with great frequency. Closely related is
a body of aerodynamic theory also referred to as Newtonian, which we
term "Newtonian Flow Theory". This theory is based upon the assump-
tion that the density in the shock layer of a hypersonic flow is very much
greater than the free stream density, and accordingly that the shock layer
is extremely thin. A development of Newtonian flow theory will appear in
Chapter III in a forthcoming book by Hayes and Probsteinw, and it is
on this source that this paper is based. Our purpose will be to give a brief
review of this theory and of its relation to hypersonic aerodynamics.

The basic parameter which is most important in assessing the applic-
ability of Newtonian flow theory is the ratio of the density in the free
stream p3, to the density immediately behind the shock pa. Thus we
define:

6 = PC01Fig (1)

Although E is not a constant for a curved shock wave, it is convenient to
consider it as though it were a single parameter. For Newtonian flow
theory to be generally applicable the quantity e12 must be small compared
with 1. Even in air at high temperature E does not become much less
than about 1/15, and we must accept the fact that Newtonian flow theory
cannot yield accurate results for actual hypersonic flows.

The obvious question arises as to why, in light of the inapplicability
of this theory to practical flows, it should be of any interest in hypersonic
aerodynamics. A number of reasons appear for this interest. The quantity
E is a basic parameter in hypersonic aerodynamics, and to really under-
stand its role we must understand the Newtonian limiting case E O.
Various fruitful theoretical approaches to problems of hypersonic flow are
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based through a successive approximation scheme on the smallness of the
parameter E. In these approaches the Newtonian theory gives the lower-
order approximation. Newtonian flow theory has a considerable instruc-
tional value. For example, it presents us with numerous anomalies and
examples of singular behavior, each of which must have a corresponding
vestige in flows with E small but finite. And finally, we should not overlook
the not-too-unlikely possibility that we may be confronted with physical
flows with shock waves for which E is truly very small.

We turn now to the work of Sir Isaac Newton, which appears in Book II
of his Principia Mathematica"). In Newton's time the sciences of thermo-
dynamics and of kinetic theory had not yet been invented, and any
development of gas dynamics in its present-day sense would have been
impossible. But Newton did make very significant deductive contributions
in a field which, in all fairness, must be included in gas dynamics. He
created a model of a gas which obeys Boyle's Law, in which the elasticity
of the gas is provided through repulsive forces acting between every two
neighboring particles which vary inversely as the distance between them
(Proposition 23). With this model Newton establishes conditions for the
complete similarity of the motion of two different systems (Proposition
32). The principal condition is that the ratio pl pv2 must be the same in
both systems, where p, p, and V are characteristic values of the pressure,
density, and velocity. This condition is equivalent to the condition that
the two systems have the same characteristic Mach number, and this
Newtonian similarity is equivalent to Mach number similarity (cf. Cranz
[Ref. 3, p. 45]).

Newton also establishes the result that if the velocities are high enough
the repulsive interparticle forces (and the free stream pressure) may be
neglected, and that in the resulting flow the resistance varies as the square
of the velocity, accurately (Proposition 33, Corollaries I and II). In this
result Newton has the equivalent of what we term the "Mach number
independence principle", of the similitude expressed by Oswatitsch(4).

Newton also studied the case of the flow of a very rarefied gas impinging
on a solid body, and it is from this part of his work that the Newtonian
pressure law originates. In Newton's model for this flow, the only forces
appearing in the problem were the forces of impact of individual particles
with the body. Newton considered the case of specular reflection (Case I)
and the case in which all the normal momentum of a particle is transferred
to the body and the tangential momentum of the particle is conserved
(Case II). Although his Case II gives realistic estimates for the pressure
force on a cold body in the flow of a rarefied gas, it cannot be considered
realistic because it provides for no shear stress. In either case the pressure
on the body is proportional to sin2 0, where O is the inclination angle

of the body surface with respect to the free stream. In classical exterior
ballistics (cf. Cranz [Ref. 5, § 12])this pressure law is presented empirically,

with an unknown multiplicative constant.
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The result corresponding to Newton's Case II is:
iCp = sin20 (2)

and with modifications is in current use today in hypersonic aerodynamics.
This result was first derived for an inviscid continuum gas flow by
Epstein"), for the case of a wedge with e very small. In this case Newton's
assumption for momentum transfer in his Case II are borne out, so that
Newton's analysis becomes correct. The result is not correct for the
pressure on a curved body, as was pointed out by Busemann [Ref. 7,
p. 275-7], because of the centrifugal forces necessary to make the thin
shock layer follow a curved path. The correct result is the Newton–
Busemann pressure law:

iCp = sin20 — KP, (3)
where K is the curvature of the body and p„U2P is the momentum
flow in the shock layer per unit depth.

The Newtonian pressure law (2) without the Busemann correction is
often used today either to estimate pressures on bodies or to serve as a
basis for comparisons of experimentally measured pressures on bodies.
It should be strongly emphasized that the pressure law (2) without the
Busemann correction, with or without other modifications, has no theore-
tical basis whatsoever for curved bodies. It does, indeed, have a
reasonably good empirical basis, but it must be recognized that its only
basis is an empirical one.

In Newtonian flow theory as applied to two-dimensional bodies, the
momentum flow term P is computed on the basis that the velocity within
the shock layer is constant along each streamline. For a streamline which
enters the layer at a given value of the lateral coordinate y for which the
inclination angle is 0(y), this velocity is U cos O. With the differential
element of mass flow per unit depth equal to pac,Udy, we may express:

= j cos 0 dy (4)

for P evaluated at y = y. The streamline y = 0 in the free stream is
taken to be the dividing streamline (see Fig. 1).

41.

q, 0

FIG. 1. Newtonian flow.
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The drag per unit depth D of a two-dimensional half-body may be
calculated most easily by means of a momentum balance, and may be
expressed:

(5)

poe U2

An important concept in Newtonian flow theory is that of the free
layer. With the curvature K sufficiently high and the angle 0 sufficiently
low, the pressure as given by (3) may become zero and would become
negative if the flow were required to follow the body. We disregard the
possibility of negative pressure and are led to the concept of a Newtonian
shock layer which separates from the body and flies free. The shape of
this free layer is determined by the condition that the pressure behind
the layer is zero (see Fig. 2).

•• • • •• FREE LAYER

VACUUM

POINT OF REIMPINGEMENT

FIG. 2. Free layer.

With the pressure set equal to zero, (3) may be readily integrated to
yield the shape of the free layer. The shape appears as a parabola with its
vertex pointed upstream in two-dimensional flow. In an axi-symmetric
flow the shape is a cubic curve. The concept of the free layer may be
generalized to include constant-pressure layers and sails.

We turn now to the question of obtaining body shapes which are
optimum in the sense of having minimum drag. For simplicity we re-
strict ourselves to the case of a two-dimensional half-body with given
width and length, but without additional isoperimetric conditions. In (5),
we note that the term y, is the body width and is fixed. Minimum drag is
obtained by maximizing the product P, cos 01. We now make the
assumption that we may maximize each factor separately, and we set

= 0, cos 0, = 1. By the calculus of variations, maximumP, is obtained

	 2 — y, — P, cosP.0  

where the subscript 1 indicates the rear edge of the body or part of the
body being considered.

The corresponding lift per unit depth is:

— ±P, sin 01. (6)
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with a straight line for the body shape, and we have the apparently in-
consistent result that the inclination angle0 is not zero at the trailing edge.
The fundamental inconsistency vanishes, however, when we note that
mathematically we may have a discontinuity in the quantity O at the
trailing edge.

Such a discontinuity in slope, though permitted mathematically, leads
to the unacceptable physical requirement of a negative delta function in
pressure at the trailing edge. This difficulty is resolved by the introduc-
tion of the concept of a "Newtonian thrust cowl", a small cowling at the
trailing edge which exerts a positive delta function in pressure on the
outside of the shock layer in order to turn it into the final direction

FIG. 3. Newtonian thrust cowl.

= 0 (see Fig. 3). Optimum shapes of this type are termed "absolute
optimum" shapes.

Shapes which are optimum under the additional restrictions of no
Newtonian cowl and non-negative pressure on the body are termed
"proper optimum" shapes. For the simple case we are considering the
proper optimum shape consists of a forebody with a maximum P shape
(a straight-line segment), followed by an afterbody on which the pressure
is zero.

A free layer erupts from the end of the forebody and just grazes the
trailing edge at the rear of the afterbody (see Fig. 4). For the two-dimen-
sional body the chord of the forebody is 1 /2 the chord of the total body.

FREE LAYER

TC

SC

FIG. 4. Proper optimum body.

For the corresponding slender body of revolution the shape is a 3/4
power shape and the chord ratio is 3/5.

'I'he drags obtained with absolute and proper optimum shapes are given
in the Tables 1 and 2 for slender two-dimensional and axisymmetric
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shapes. One conclusion from the Newtonian theory which should be
general in hypersonic aerodynamics is that optimum bodies are not
obtained with simple power-law shapes.

If cross-flow is present, an analysis is necessary which takes the in-
dividual particle trajectories into account. A particle on striking the
surface takes the "fall line" direction, the direction of steepest descent if
the free stream flow is taken to be directed vertically downward. Sub-
sequently, it follows at constant velocity a geodesic path, a path of zero
lateral curvature on the body surface. For the analysis of solutions with
cross flow an essential concept is that of the "locus of entering streamlines",
the locus of points on the body such that a particle entering at such a
point passes over a particular other point being investigated on the body
(see Fig. 5).

GEODESIC OF ENTERING
1.7LOCUS

TRAJECTORY STREAMLINES

POINT INVESTIGATED

FIG. 5. Locus of entering streamlines.

For the pressure on the body a formula similar to (3) may be obtained.
The term KP of (3) is replaced by the double dot product between the
two-dimensional symmetric tensor or dyadic representing the curvature
of the body and a two-dimensional symmetric tensor or dyadic representing
the momentum flow in the shock layer. To obtain this momentum tensor
the structure of the shock layer must be known.

This cross-flow analysis may he carried out in principle for any three-
dimensional body shape, and may be carried out in closed form in certain
simple cases. 'I'he method is of interest in hypersonic aerodynamics because
it may be applied to problems in which the restrictions of Newtonian
theory are relaxed and which may be considered to be more realistic, and
because of the conceptual understanding obtainable from the study of
the Newtonian theory.

TABLE 1
Drags of slender two-dimensional shapes

Shape DID wedge

Wedge 1• 000
0.864 Power (J. Cole) 0.918
Proper optimum 0.770
Absolute optimum 0-500
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TABLE 2
Drags of slender axi-symmetrical shapes

Shape D/D cone

Cone1.000
3/4 powerOE703
2/3 power (J. Cole)0.667
Proper optimum OE576
Absolute optimum 0.422
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